
Benchmarking the Effects of Operating System

Interference on Extreme-Scale Parallel Machines∗

Pete Beckman1 Kamil Iskra1 Kazutomo Yoshii1 Susan Coghlan1

Aroon Nataraj2

1Argonne National Laboratory

Mathematics and Computer Science Division

9700 South Cass Avenue

Argonne, IL 60439, USA

2Department of Computer and Information Science

University of Oregon

Eugene, OR 97403, USA

{beckman,iskra,kazutomo,smc}@mcs.anl.gov

anataraj@cs.uoregon.edu

Abstract

We investigate operating system noise, which we identify as one of the main reasons for a

lack of synchronicity in parallel applications. Using a microbenchmark, we measure the noise

on several contemporary platforms and find that, even with a general-purpose operating sys-

tem, noise can be limited if certain precautions are taken. We then inject artificially generated

noise into a massively parallel system and measure its influence on the performance of collec-

tive operations. Our experiments indicate that on extreme-scale platforms, the performance is

correlated with the largest interruption to the application, even if the probability of such an in-

terruption on a single process is extremely small. We demonstrate that synchronizing the noise

can significantly reduce its negative influence.

Keywords: microbenchmark, noise, petascale, synchronicity

∗This work was supported by the Mathematical, Information, and Computational Sciences Division subprogram of

the Office of Advanced Scientific Computing Research, Office of Science, U.S. Department of Energy, under Contract

DE-AC02-06CH11357.

1

1 Introduction

The interaction between operating and run-time system components on massively parallel process-

ing systems (MPPs) remains largely a mystery. While anecdotal evidence suggests that translation

look-aside buffer (TLB) misses, interrupts, and asynchronous events can dramatically impact per-

formance, the research community lacks a clear understanding of such behavior at scale and on

real applications. Are there levels of operating system (OS) interaction that are acceptable? How

significant is the performance difference between global collective operations, such as barriers

and reductions, in the presence of OS interference? Are there thresholds that can be tolerated for

some applications? Which? These and other questions remain largely unstudied as we search to

build ever-larger petascale MPPs and Linux clusters [12]. However, answers to these questions are

critical to the designs and computational models of future architectures. Understanding how oper-

ating systems interact with applications and how interrupts, process scheduling, and I/O processing

affect performance on large-scale systems is key to petascale systems research.

Operating system interference is commonly referred to as “noise.” Intuitively, noise is the col-

lection of background activities that involuntarily interrupt the progress of the main application.

In this paper, we use noise to refer to the overall phenomenon but choose the term detour when

discussing any individual noise-comprising event, for example, when an application is temporarily

suspended to process an OS-level interrupt.

Most asynchronous activities not initiated or managed from user space can clearly be identified

as noise, for example, interrupts to update an internal OS kernel clock. Many would also put TLB

misses in this category, but we raise an objection to this position. A TLB miss occurs when an

address supplied to the CPU by the application cannot be resolved by using the entries in the TLB;

page table entries (PTEs) must then be consulted, either by the CPU itself or by the OS exception

handler. While in many practical situations the exact times of TLB misses are difficult to predict,

they clearly depend on the application’s behavior; that is, they are not strictly asynchronous—

TLB misses take place if the application accesses a large number of memory pages. Because of

this causal relationship, it is debatable whether considering TLB misses as system noise is useful.

Except for TLB misses within the OS code, the focus of improvement should be on memory

layout of the user code. The same is clearly true for cache misses. We do not consider them to be

noise. Similar problems arise from uneven data partitioning. Some nodes will compute longer in

iterations, perturbing the synchronization of the system. All of these issues are most strongly tied

to the application, not the asynchronous behavior of the OS. For this paper we focus solely on the

effects of OS noise outside users’ control—the core scalability of an OS for petascale architectures.

2

2 Synchronicity

Several modes of cooperation exist between processes in parallel applications. An important one

is the lockstep mode, where periodically all processes coordinate their progress by using collective

operations ranging from simplest barriers to complex all-to-all message exchanges. Because all

processes must take part in the collective operation, the overall speed is frequently reduced to that

of the slowest process. Hence, maintaining synchronicity between the processes is vital; ideally,

each process should take exactly the same amount of time to perform the operations between the

collectives. With the collective invoked on all processes at precisely the same moment, nodes will

not be left idle, waiting for the others to catch up. If just one process experiences a significant delay

arriving at the collective, however, the entire operation can suffer, and all remaining nodes will sit

idle [20]. Large-scale clusters and MPPs are especially prone to this behavior because of the large

number of processes involved: the probabilities of delays are cumulative, eventually turning into a

near certainty.

Several common events can trigger a detour from the application code, not all of which result

in OS noise as defined earlier. Some events have little impact on synchronization, while others can

cause dramatic delays. Table 1 provides an overview of detours on a 32-bit PowerPC box running

the Linux 2.4 kernel.

Table 1: Overview of typical detours.

Source Magnitude Example

cache miss 100 ns accessing next row of a C array

TLB miss 100 ns accessing rarely used variable

HW interrupt 1 µs network packet arrives

PTE miss 1 µs accessing newly allocated memory

timer update 1 µs process scheduler runs

page fault 10 µs modifying a variable after fork()

swap in 10 ms accessing load-on-demand data

pre-emption 10 ms another process runs

Five of the entries from Table 1 are associated with memory access, indicating how complicated

memory management can be across increasingly complex hierarchies [19] on an OS that supports

paging and virtual memory for efficiency and flexibility.

The smallest disturbances come from cache misses. If the data is not in cache, a cache line is

loaded from main memory. A memory access normally takes around 100 ns.

When an instruction attempts to access memory at a virtual address that the CPU does not

know how to translate to the corresponding physical address, a TLB miss occurs. The miss can

take several hundred nanoseconds, provided a corresponding PTE is available. Otherwise, the OS

3

exception handler must create a new PTE entry for the virtual address, a process that could take a

few microseconds.

An OS exception handler is invoked if an attempt is made to access a memory location that

is protected. This process need not indicate an error; optimizations such as copy-on-write are im-

plemented by using this mechanism. A detour on the order of 10 µs is possible in this case. The

detour will be much longer if the page data needs to be read from disk; the speed of the disk access

(typically around 10 ms) is a limiting factor then.

Hardware interrupts normally have a higher priority than do application processes. Interrupts

cause a handler to be invoked. Even though they are designed for speed, interrupt handlers take

from a few microseconds to at most a few hundred to complete. If computationally expensive oper-

ations are required, a handler may trigger additional processes, which are scheduled at a convenient

time after the handler has completed initial work. For example, a hardware interrupt handler of a

network driver simply sends an acknowledgment to the hardware and schedules a task to handle

the newly arrived network packet(s) at a later time.

Multitasking operating systems are usually based on recurring ticks. A timer interrupt is pe-

riodically raised, and the interrupt handler is invoked. Counters and timers are updated; when a

process runs out of its time slice, another process is run. Typically, the timer interval is in the range

of 1 to 10 ms. The interrupt handler itself usually consumes several microseconds.

Obviously, the process scheduler can introduce long detours if the parallel application process

is supplanted by some other process. A typical detour will then take at least 10 ms—the time

slice size—unless the newly scheduled process voluntarily vacates the processor. Therefore, rogue

processes on a cluster, particularly those not I/O bound and so using the full time slice, can be a

significant problem.

One class of detours absent from Table 1 because of its unpredictability is the lack of balance

between individual application processes. Poor programming excluded, some problems are simply

inherently difficult to balance properly (e.g., when the time needed to process data depends on the

data itself). Even assuming that such a problem is properly balanced at startup, if processing the

data alters it and if multiple iterations of the algorithm are required, periodic load redistribution will

be required to maintain a good balance. The dependence between processing time and data may be

clearly visible in the algorithm, but it may just as well be a subtle effect of, for instance, different

memory access patterns employed on different processes, resulting in substantially different cache

hit ratios.

For an extreme-scale cluster, only some of these detours will ultimately lead to a dramatic

desynchronization of parallel operations. Unsynchronized noise creates a problem, as its effects

increase with an increasing number of processes. Even very long detours—in the range of several

milliseconds—have little overall effect as long as they occur at the same time on all processors [16].

4

At the other end of the scale, exceedingly short detours, such as cache misses, take an order of

magnitude less time than the fastest collective operations. They do not contribute significantly to

desynchronization if their frequency is similar on all processes.

Lightweight kernels optimized for compute nodes, such as IBM Blue Gene/L’s (BG/L) BLRTS [13]

or Cray XT3’s Catamount [11], try to avoid many of these detours through a simplified architec-

ture, for example, by not supporting general-purpose multitasking. From the entries in Table 1,

cache misses are the only ones that will certainly occur; on some architectures TLB misses also

cannot be avoided (depending on the amount of memory addressed by the CPU, the maximum

page size, and the TLB size). Some hardware interrupts and timer updates are also possible, but in

a far more limited number than in a general-purpose OS.

3 Noise Measurements

To explore the effect of noise on extreme-scale machines, we begin by gathering real benchmarks

from existing platforms. In this section, we describe experiments conducted to measure the inherent

noise of several operating systems.

3.1 Accurate Time Measurement

Since detours can be very short, careful benchmarking is critical. Measuring cache or TLB misses

is outside our scope of interest; still, in order to measure hardware interrupts, a clock-time mea-

surement function with a submicrosecond precision is required. Thus, the commonly used POSIX

gettimeofday() system call is not quite good enough: even if its precision matches its resolu-

tion (which is not guaranteed), it will still have a precision of only 1 µs. Besides, as we will show

later, on some systems invoking it takes several microseconds, simply because of the system call

overhead.

Most CPUs provide a precise CPU timer that can usually be read by using just a few assembly

instructions, so it only takes some 10 ns to 100 ns to obtain a new value. The timer is synchronized

with the CPU clock. The updating frequency is either the same as the CPU frequency (thus, the

precision will be 1 ns on a 1 GHz CPU), or it equals the timebase, which is lower than the CPU fre-

quency by a fixed factor. In the latter case, the precision will be somewhat lower but still well under

a microsecond on any modern CPU. So long as power-saving variable clock frequency capabilities

are not enabled, measurements will be accurate.

The overhead of reading the timer is CPU specific. The counter itself is usually 64 bit, so, at

least on architectures with 32-bit registers, an implicit or explicit atomic operation may be required

to obtain a consistent reading. Table 2 shows the overhead of reading the timer, and, for compari-

5

Table 2: Overhead of reading the CPU timer and of calling gettimeofday(). Experiments were con-

ducted in April 2006.

Platform CPU OS CPU Timer [µs] gettimeofday() [µs]

BG/L CN PPC 440 (700 MHz) BLRTS 0.024 3.242

BG/L ION PPC 440 (700 MHz) Linux 2.6 0.024 0.465

Laptop Pentium-M (1.7 GHz) Linux 2.6 0.027 3.020

son, the overhead of calling gettimeofday(), on a BG/L compute node (CN) and an I/O node

(ION), as well as on an x86 Linux laptop. As the table shows, using the CPU timer is easily one to

two orders of magnitude less expensive than calling gettimeofday(), in addition to providing

a more accurate result.

3.2 Noise Measurement Technique

To measure noise, we use a benchmark loop as shown in Figure 1. This loop detects detours and

stores information about them in an array for later processing. It will finish when the recording

array gets full; on a busy system, this situation will take place almost immediately, because of the

frequency of context switches. On the other hand, this loop can iterate for a long time on a virtually

noiseless system such as the BG/L compute node OS.

cnt=0;

min_ticks=INFINITY;

current=rdtsc();

while(cnt<N) {

 prev=current; /* keep the previous timer value */

 current=rdtsc(); /* obtain the current timer value */

 td=current-prev;

 if(td>threshold) {

 detour[cnt++]=prev;

 detour[cnt++]=current;

 }

 if(td<min_ticks) min_ticks=td;

}

Figure 1: Acquisition loop of the noise measurement benchmark.

In the acquisition loop, the current timer value is repeatedly sampled (using a custom rdtsc()

function) at a very high rate. If the code is allowed to run undisturbed, the sampling will essentially

be periodic, since the same set of instructions is executed in each iteration. Randomly occurring

detours bring disturbances into that process; these are determined by simply subtracting the timer

value obtained during the previous iteration from the current one. We record the start and end

time of each detour. Since for this set of experiments cache, TLB, and other memory effects are

not considered, the benchmark loop does not exercise the memory. Instead, it correctly measures

the interruptions forced by the OS when the application is quiescent. The threshold level used

6

for this benchmark was 1 µs. For modern machines, an ordinary interrupt handler takes several

microseconds (see Table 1).

sampling time

d2 d3

t 1 t 2 t 3t min

Figure 2: A sample of detours.

Figure 2 shows how the benchmark (Figure 1) regularly samples the clock until interrupted by

a detour. The vertical arrows pointing downward represent sampling points; empty rectangles are

the detours. Three cases are shown:

1. No detour occurs, so t1 equals tmin (which is the final value of min_ticks from Figure 1).

2. A short detour of length d2 takes place. The intersample period t2 is approximately equal to

tmin + d2 (it may be slightly larger because executing the detour code may flush the acqui-

sition loop from the CPU cache). Here t2 is below the threshold, so the detour will not be

recorded.

3. A longer detour of length d3 takes place. This time t3 ≃ tmin + d3 is above the threshold, so

the detour will be recorded.

The minimum iteration time tmin is important because it determines the maximum resolution of

the benchmark. A sample of the results captured on several platforms can be found in Table 3. The

results clearly indicate that all sampled architectures are capable of instrumenting 1 µs events. The

exact tmin values depend on the CPU frequency, but also on other factors such as the quality of the

branch prediction and compiler optimization. Furthermore, the OS can set memory page attributes,

such as cache inhibit or page guard on pages where the loop resides. If so, the minimum iteration

time will be different between two platforms even if the underlying hardware is the same—this

effect can be observed on BG/L. The vastly superior timer resolution of the AMD Opteron CPU in

Cray XT3 can be attributed to its 64-bit extensions: most operations in the loop are performed on

64-bit integers, and the other platforms, featuring 32-bit CPUs, must implement those in software.

This noise measurement technique is not without limitations. It is meant for identifying inherent

noise only: the system is expected to be idle, and the benchmark itself is small and simple enough

to generate no user-triggered detours when running. It will not measure any memory management

overhead or detours stemming from processing MPI messages in the background as they arrive

from a communication link. For example, arrivals of relatively short (1–2 KB) TCP/IP messages

7

Table 3: Minimum acquisition loop iteration times. Most experiments were conducted in May 2005, XT3

in Aug. 2005.

Platform CPU OS tmin [ns]

BG/L CN PPC 440 (700 MHz) BLRTS 185

BG/L ION PPC 440 (700 MHz) Linux 2.4 137

Jazz node Xeon (2.4 GHz) Linux 2.4 62

Laptop Pentium-M (1.7 GHz) Linux 2.6 39

XT3 Opteron (2.4 GHz) Catamount 7

Table 4: Statistical overview of the results. Most experiments were conducted in May 2005, XT3 in Aug.

2005.

Platform Noise ratio [%] Max detour [µs] Mean detour [µs] Median detour [µs]

BG/L CN 0.000029 1.8 1.8 1.8

BG/L ION 0.02 5.9 2.0 1.9

Jazz node 0.12 109.7 6.2 8.5

Laptop 1.02 180.0 9.5 7.0

XT3 0.002 9.5 2.1 1.2

results in the kernel taking detours of 10–20 µs.

3.3 Noise Measurement Results

We have applied our noise measurement technique to several different platforms. Table 4 presents

a statistical analysis overview of the results obtained. Figures 3 to 5 provide a closer look at the

actual data. Within the figures, plots on the left are time series graphs: the x axis denotes the

execution time since the start of the benchmark, the y axis the length of a detour that took place at

that time (if any). These plots give a good idea of the noise pattern. Plots on the right also provide

the length of the detours on the y axis, but the x axis is sorted by the detour length, providing a

better overview of the percentage of detours of a particular length.

Looking at the results in Table 4, we see that the noise ratio can vary widely between the plat-

forms. The differences in the maximum detour length observed, while also large, are comparatively

much smaller. The mean and median are relatively close to each other, indicating that the noise dis-

tributions lack extremely long detours. Our claim, which we further discuss in Section 5, is that

the performance of extreme-scale parallel applications is affected mostly by the longest detours

observed, and not by the noise ratio.

The data gathered from the compute node of IBM BG/L stands out from its peers (Fig. 3,

top). As of this writing, BG/L is the largest MPP architecture available. The maximum detour is

more than three times less than the other platforms. The system is virtually noiseless. The only

periodic interrupt is a decrement timer: because the decrement register is a 32-bit integer, it would

8

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 5 10 15 20 25 30 35 40 45

D
e

to
u

r
[µ

s
]

Time [s]

BG/L Compute Node − timeseries

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 1 2 3 4 5 6 7 8

D
e

to
u

r
[µ

s
]

Rank

BG/L Compute Node − sorted by detour

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10

D
e

to
u

r
[µ

s
]

Time [s]

BG/L I/O Node − timeseries

 0

 1

 2

 3

 4

 5

 6

 0 200 400 600 800 1000

D
e

to
u

r
[µ

s
]

Rank

BG/L I/O Node − sorted by detour

Figure 3: Noise measurements on BG/L: compute node (top) and I/O node (bottom).

underflow after approx. 6.1 s (232/700 MHz), so it gets reset in an interrupt handler every 6 s. On

BG/L, however, even that interrupt is automatically removed when the user code does not call

user-level timers.

It is interesting to compare this with the data obtained on BG/L I/O node (Fig. 3, bottom), as the

two platforms have identical CPUs, so the differences can be attributed squarely to the operating

systems used: a specialized lightweight kernel on compute nodes and an embedded Linux on I/O

nodes. From the data, three types of behavior can be observed. First, 80% of the detours are 1.8 µs

and correspond to a Linux timer update scheduled for every 10 ms. Second, 16% are slightly longer,

approximately 2.4 µs, because on every sixth timer interrupt the process scheduler is run. Third, a

handful of detours are between 3 and 6 µs.

Compared to other platforms, the detours from BG/L I/O node Linux are actually quite short.

Jazz (Fig. 4, top) is a relatively standard commodity Linux cluster. In spite of far more capable

CPUs, the maximum detour length is more than an order of magnitude larger. The difference be-

tween a specialized lightweight kernel and an optimized embedded Linux kernel is far less than

9

 0

 20

 40

 60

 80

 100

 120

 0 1 2 3 4 5

D
e

to
u

r
[µ

s
]

Time [s]

Jazz cluster − timeseries

 0

 20

 40

 60

 80

 100

 120

 0 200 400 600 800 1000

D
e

to
u

r
[µ

s
]

Rank

Jazz cluster − sorted by detour

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

D
e

to
u

r
[µ

s
]

Time [s]

Laptop − timeseries

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 0 200 400 600 800 1000

D
e

to
u

r
[µ

s
]

Rank

Laptop − sorted by detour

Figure 4: Noise measurements on Linux platforms: Jazz cluster node (top) and a laptop (bottom).

the difference between two different Linux systems. The kernel is in fact the least responsible for

these differences. BG/L I/O nodes run a fairly standard embedded Linux kernel, without sophisti-

cated low-latency patches. The dramatic difference stems from other processes run on these Linux

platforms. BG/L I/O node Linux is trim; Jazz, on the other hand, even though optimized for clus-

ter computation, maintains detour-causing background processes that perform job management

(startup, termination) and monitoring tasks. Often, these extra processes are mistakenly included

while discussing the noise native to an operating system, instead of separating the noise inherent

to the OS from the configuration of the system.

We can also compare the noise on BG/L with that measured on another lightweight MPP ker-

nel: Catamount, running on the compute nodes of Cray’s large-scale MPP XT3 systems (Fig. 5).

The noise ratio (Table 4) is clearly superior to any of the Linux platforms but is still much higher

than that of BLRTS running on BG/L compute nodes. In fact, the maximum and mean are slightly

higher than on BG/L I/O nodes running Linux. The median, on the other hand, is the lowest of all

platforms tested, indicating that while XT3 is far from being noiseless, its detours are generally

10

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 20 40 60 80 100

D
e

to
u

r
[µ

s
]

Time [s]

Cray XT3 − timeseries

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 200 400 600 800 1000

D
e

to
u

r
[µ

s
]

Rank

Cray XT3 − sorted by detour

Figure 5: Noise measurements on XT3 compute node.

short. It is difficult to attribute all of the differences to kernel design. The 64-bit AMD is signifi-

cantly faster than the PPC at the heart of BG/L. Until a portable lightweight kernel can be run on

both BG/L and x86 hardware, exact comparisons cannot be made.

4 Noise Injection

The extremely low inherent noise of the BG/L compute node kernel makes it suitable as a test

harness for injecting artificial noise and measuring its influence on application performance. Be-

ginning with the nearly noiseless operation of BG/L, we inject noise and explore the impact on

applications that require synchronous behavior. This strategy should allow us to get an impres-

sion of how such applications would perform if they ran on top of a noisier kernel—performing

such experiments in reality was infeasible for us because of a lack of sufficiently massive parallel

machines that support kernels other than BLRTS.

The operations most sensitive to desynchronizing detours are collectives. With many of them, if

even one of the CPUs is late to the collective operation, the entire operation will be delayed (this is

the case with all three collectives we discuss below). For example, if only one of possibly thousands

of nodes suspended the local application and scheduled a different process for a time slice, that

single 10 ms detour on one CPU would suddenly stall the collective dramatically. On a machine

such as BG/L, with some fast collectives taking just a few microseconds, such a misconfigured

system would slow the collective operation by a factor of more than 1000.

To explore this behavior, we focused solely on the MPI collective operations expected to be

highly sensitive to noise (barrier, allreduce, and alltoall) and injected random delays. The results

presented below can thus be considered a worst-case scenario, as real-world applications perform

collectives for only a fraction of their execution time.

11

A real-time interval timer was used to periodically force execution of a delay loop. We explored

both synchronized and unsynchronized noise. In our implementation, the difference is only at

initialization: with the unsynchronized injection, individual processes of a parallel job are delayed

by a random interval before the first injection is scheduled. A barrier is performed before the

benchmark measurements start, in order to synchronize the execution progress of the processes; no

further explicit (de)synchronizations are performed.

Figure 6 presents the results of several collective operations. Each collective was tested in

configurations ranging from a single midplane (512 nodes) to 16 racks (16,384 nodes) on the

IBM T. J. Watson Research Center 20-rack BG/L “BGW” system in Oct. 2005, as of this writing

the third fastest computer in the world [17]. The results shown are for experiments performed in

virtual node mode, in other words, when both CPU cores on each node are occupied by application

processes. We injected noise at frequencies ranging from 10 Hz (interval 100 ms) to 1 kHz (interval

1 ms). The minimum detour injected was 16 µs—the overhead of the interval timer used. We tried

several larger values; in addition to 16 µs, Figure 6 shows results for 50, 100, and 200 µs. In

general, we found the performance of the noise-free experiments to be almost identical to that

of the experiments with synchronized 16 µs noise at 100 ms intervals; we have thus omitted the

former results from the plots in order to avoid clutter (see also Figure 7).

The results for the simplest barrier can be found at the top of Figure 6. Barriers on BG/L are

implemented by using a dedicated global interrupt network, providing excellent performance. As

can be observed, synchronized noise (Fig. 6, top left) only slightly affects the performance—by

26% in the worst case. Unsynchronized noise (Fig. 6, top right) presents more of a challenge—

execution time increases by up to a staggering factor of 268. However, that statement alone does

not tell the full story. While the absolute increase in execution time is important, more interesting

is the relationship between performance and detour length. As can be observed, that relation is

mostly linear, and it saturates at twice the time length of a detour (check the curve for interval

1 ms). As far as we know, barriers in virtual node mode are implemented by first synchronizing the

two processes running on the same node and then synchronizing all nodes over the network. Each

of these steps can be slowed by as much as a single detour time, but no more than that, simply

because nodes execute each step independently, in parallel. Interesting, there appears to be another

saturation point at the level equal to a single detour length (check the curve for interval 100 ms).

The relationship between the execution time and the node count seems to be nonlinear, at least

for high injection intervals: there is a critical value of parameters, where a phase transition takes

place between a very efficient execution largely unaffected by noise, and a less efficient one, where

the effect of noise is linear (note that the node count axis is logarithmic; the effect is even more

apparent in a linear scale). We stress that we do not see any prohibitive, superlinear execution time

growth related to the size of the machine.

12

 1024
 2048

 4096
 8192

 16384
 32768

 200

 100

 50
 16

 2.5

2.0

 1.5

1.0

 0.5

0

Single operation time [µs]

Barrier with synchronized detours

Interval 1 ms
Interval 10 ms

Interval 100 ms

processes

Detour time [µs]

Single operation time [µs]

 1024
 2048

 4096
 8192

 16384
 32768

 200

 100

 50
 16

 0

 100

 200

 300

 400

 500

Single operation time [µs]

Barrier with unsynchronized detours

Interval 1 ms
Interval 10 ms

Interval 100 ms

processes

Detour time [µs]

Single operation time [µs]

 1024
 2048

 4096
 8192

 16384
 32768

 200

 100

 50
 16

 0

 20

 40

 60

 80

 100

 120

Single operation time [µs]

Allreduce with synchronized detours

Interval 1 ms
Interval 10 ms

Interval 100 ms

processes

Detour time [µs]

Single operation time [µs]

 1024
 2048

 4096
 8192

 16384
 32768

 200

 100

 50
 16

 0

 200

 400

 600

 800

 1000

 1200

Single operation time [µs]

Allreduce with unsynchronized detours

Interval 1 ms
Interval 10 ms

Interval 100 ms

processes

Detour time [µs]

Single operation time [µs]

 1024
 2048

 4096
 8192

 16384
 32768

 200

 100

 50
 16

 0

 50

 100

 150

 200

 250

Single operation time [ms]

Alltoall with synchronized detours

Interval 1 ms
Interval 10 ms

Interval 100 ms

processes

Detour time [µs]

Single operation time [ms]

 1024
 2048

 4096
 8192

 16384
 32768

 200

 100

 50
 16

 0

 50

 100

 150

 200

 250

Single operation time [ms]

Alltoall with unsynchronized detours

Interval 1 ms
Interval 10 ms

Interval 100 ms

processes
Detour time [µs]

Single operation time [ms]

Figure 6: Performance of collective operations barrier (top), allreduce (middle), and alltoall (bottom) in the

presence of artificially injected noise, synchronized (left) and unsynchronized (right).

The second collective operation tested was allreduce. There are at least two sorts of reduction

operations on BG/L. Certain simple cases can be handled by the network hardware; others require

cooperation with the message layer code linked with the application, or even of the application

code itself. The results shown here are for the latter case, as noise has a more interesting influence

then. Allreduce with a synchronized noise (Fig. 6, middle left) behaves quite similarly to a barrier,

13

only the logarithmic complexity of the operation in respect to the number of processes is more

apparent. The behavior with unsynchronized noise (Fig. 6, middle right) is different. Depending

on perspective, it can be characterized as either less susceptible to noise than is the performance of

barriers (execution time increase by at most a factor of 18) or worse overall (the increase observed

is over 1000 µs). The larger degree of cooperation required from the application processes by the

reduction operation means that there are more opportunities for noise to influence the performance.

As the algorithm is logarithmic, the maximum slowdown is not fixed as it was with barriers, but also

increases logarithmically with the number of processes. As with barriers, execution time is mostly

linear in relation to detour length, although a careful observer will note a slight superlinearity. We

attribute that behavior to the fact that as the detour length increases, the percentage of CPU cycles

left to the application decreases, and that effect is nonlinear.

The last collective operation we tried was alltoall (Fig. 6, bottom). Unlike the previous two, it

has a linear complexity with respect to the number of nodes, so on a massively parallel machine

like BG/L its performance leaves something to be desired: we had to label the z axis in milliseconds

to fit the plots. Noise injection has a comparatively minor influence on the performance, possibly

because the detours we inject are too fine-grained compared to the collective itself. Part of the

reason might also be that alltoall has a higher degree of parallelism than do the other collectives

tried, so occasional detours do not stall the whole operation; another part of the explanation is that

at this scale, alltoall on BG/L saturates communication links, forcing processes to stall [2]. This

situation is confirmed by the results with synchronized noise, which were the only tests where

the slowdown was smaller than the percentage of CPU cycles taken away by noise—performance

will not be affected if a process has nothing to do anyway at the time a detour occurs. With un-

synchronized noise, the slowdown we observe ranges from 173% for 1,024 processes to 34% for

32,768 processes, although in absolute terms the latter is the highest, reaching around 53 ms. The

superlinear increase with the detour length is more pronounced with alltoall (see Fig. 6, bottom

right) than with other collectives. However, we point out that the noise ratio where that happens is

very high: there is a detour of 200 µs every 1000 µs. This is more like a cacophony than noise, and

hence affects the performance in that way.

Figure 7 presents some of the same data as Figure 6, only this time we have put the results with

synchronized and unsynchronized noise in the same plot, to allow for an easier comparison. We are

showing the results of allreduce with 16 µs detours injected every 1 ms, which produces a fairly

realistic 1.6% noise ratio. The vanilla, noise-free results are also included. As can be observed,

there is very little difference between the results with synchronized noise and the noise-free ones,

proving the effectiveness of synchronization. Unsynchronized noise at this noise ratio adds a fairly

constant overhead of around 35 µs per collective operation.

In addition to the experiments in virtual node mode, we performed analogous ones in copro-

14

 0

 20

 40

 60

 80

 100

 120

 140

 1024 2048 4096 8192 16384 32768

S
in

g
le

 o
p

e
ra

ti
o

n
 t

im
e

 [
µ

s
]

processes

Allreduce

Detour 16µs, Interval 1ms, unsynchronized
Detour 16µs, Interval 1ms, synchronized

No noise

Figure 7: Performance of allreduce with 1.6% noise ratio.

cessor mode, that is, when only one application process per node is run and some message-passing

services are offloaded onto the second core. One might expect that this separation would make co-

processor mode far more insensitive to noise. Experiments have shown, however, that the influence

of noise is similar irrespective of the execution mode; presumably that is the case because even in

coprocessor mode the bulk of communication-related operations are performed by the main CPU

core.

5 Noise Distributions

The results presented so far suggest that coarse-grained noise is more detrimental to an applica-

tion’s performance than is fine-grained noise. To verify this hypothesis, in Oct. 2006 we ran a

number of experiments where we kept the per-process percentage of the injected noise constant

but varied the noise distribution. Figure 8 presents a sample of the results.

In these experiments we injected noise in amounts meant to more closely correspond to reality,

based on earlier results presented in Table 4. As in Figure 6, we have the number of processes

on the x axis and the detour length on y (to keep the noise percentage constant, we varied other

injection parameters, such as the interval, when adjusting the detour length). This time, on the z

axis we show execution time magnification, which is simply a ratio of the average execution time

of a single benchmark iteration with and without noise. The benchmark in question is based on

the one used in Section 4, only this time as a collective operation we used an allreduce that was

accelerated by the BG/L collective network hardware.

Overall, the results clearly support our hypothesis: large detours cause far greater slowdowns

than do smaller detours, even if the noise percentage is kept constant. With larger noise ratios, such

as 1% (Fig. 8, bottom right), this is the case for all job sizes. However, with the smallest ratios,

15

 2048
 4096

 8192
 16384

 32768

 1351.5

 136.5
 15

 0

 10

 20

 30

 40

 50

Exec. time magnification

0.015% noise

processes

Detour time [µs]

Exec. time magnification

 2048
 4096

 8192
 16384

 32768

 786.5

 651.5

 80
 8

 0

 10

 20

 30

 40

 50

 60

 70

 80

Exec. time magnification

0.08% noise

processes

Detour time [µs]

Exec. time magnification

 2048
 4096

 8192
 16384

 32768

 1486.5
 1351.5

 136.5
 15

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

Exec. time magnification

0.15% noise

processes

Detour time [µs]

Exec. time magnification

 2048
 4096

 8192
 16384

 32768

 986.5
 851.5

 100
 10

 0

 20

 40

 60

 80

 100

 120

 140

Exec. time magnification

1% noise

processes

Detour time [µs]

Exec. time magnification

Figure 8: Execution time magnification when injecting constant amounts of noise into a benchmark based

on allreduce (incomplete data sets on 32K nodes for noise ratios of 0.08% and 0.15% are due to time

constraints in our access to such a large machine configuration).

in particular 0.015% (Fig. 8, top left), execution times increase significantly only for the largest

process counts. More worrying, it appears as if, in that case, we will see the dreaded explosion

in run-time as the number of processes increases. We have included two more plots with interim

noise ratios of 0.08% and 0.15% to show that that is in fact not the case. As can be observed,

execution time magnification does not exponentially grow ad infinitum with an increasing process

count, but fairly quickly levels off or even slightly decreases. The larger the noise ratio, the sooner

this effect takes place—for 1% noise, it is not visible even for the smallest process count tested.

The leveling-off is due to noise saturation—with a fixed per-process noise ratio, the total amount

of noise in the system increases linearly with an increasing process count. It reaches a stage when

at any given point in time, a detour is almost guaranteed to be taking place somewhere—adding

more processes, and thus more detours, will simply force the latter to overlap in time, significantly

reducing their ability to do any (further) damage.

16

6 Discussion

Operating system noise has been studied by others for several years, and the roots can be traced

back to over a decade. The experiments described by Burger et al. [5], while focusing on another

aspect of the problem (evaluation of gang scheduling and demand paging on massively parallel

systems), employ techniques similar to what we used in Section 4: they inject artificial delays to

simulate the effect of sharing CPUs with other processes. In a more recent study, Petrini et al. [14]

found nonessential processes to be responsible for a significant slowdown of the ASCI Q machine

and devised techniques to identify the sources of noise and eliminate them. However, because the

difficulties stemmed from a misconfigured system running printer daemons and other nonessential

processes, these results cannot be generalized to the nature of noise inherent in tick-based operating

systems.

Several studies have shown that, on four-CPU SMP machines, the overall parallel job perfor-

mance is better if one of the CPUs is left idle [10] so that it can handle the interrupts or other

processes. The remaining CPUs can remain tightly synchronized. Coscheduling processes of a

parallel application across the whole machine allowed Jones et al. [9] to reduce the execution time

of collectives such as allreduce by a factor of 3 on a large IBM SP.

Sottile and Minnich [15] argue that microbenchmarks based on a fixed work quantum principle

do not provide enough insight; they recommend using a fixed time quantum principle as an alter-

native, since it makes the results much easier to analyze with established techniques from signal

processing and spectral analysis. The benchmark introduced in Section 3 samples the CPU timer

as frequently as possible, performing a minimal, constant set of operations between the samples.

This means that it works according to the fixed work quantum principle, since sample intervals

will not be constant if detours occur. The fixed time quantum principle would be impractical in our

case because the overhead of timer interrupts on BG/L is over 10 µs—much more than the shortest

detours we are interested in. We still did our best to avoid cache effects by storing information only

on detours that were above a predefined threshold.

In an initial theoretical study, Agarwal et al. [1] determined that noise can drastically reduce

the performance of collective operations, but only with some noise distributions, such as heavy-

tailed or Bernoulli. This work was followed with an experimental evaluation by Garg and De [7].

On the other hand, Petrini et al. [14] claim that, at least in case of fine-grained applications, short

but frequent detours on all nodes are more detrimental to the performance than are long but less

frequent ones on just a few nodes. They further claim that performance is affected most if noise

resonates with an application, that is, if their granularities are similar. We believe that claim to

be only partially true. Obviously, fine-grained noise will have little effect on a coarse-grained

application, as it simply will not be able to desynchronize the processes in any significant way—

17

we could see that in case of the expensive alltoall collective (Fig. 6, bottom). However, we see no

reason why coarse-grained noise should not affect a fine-grained application. On the contrary, its

effects are likely to be devastating, as one could conclude from looking at the results of lightweight

barriers (Fig. 6, top right). Essentially, even fairly infrequent detours become very likely with a

rapidly increasing number of processes; once they are close to certain to occur, they dwarf all the

shorter, but more frequent detours.

This phenomenon was confirmed by Tsafrir et al. [18]. Using a probabilistic model, they show

that the impact of noise on a parallel job is linearly proportional to the number of nodes, but only

if noise probability is small enough. Once the job exceeds a particular size, a detour is nearly

certain to occur, and further increases in node count do not affect noise. This result confirms our

findings from Section 4 regarding barriers. According to their model, for 100k nodes, one needs

a per node noise probability no higher than 10−6 per phase (i.e., between two collectives) for a

machinewide probability of a detour to be lower than .1. They identify fine-grained clock ticks to

be a major source of overhead: even though 1 kHz ticks take no more than 1% of CPU time, they

slow a microbenchmark used by at least 40%—on one node. Cache pollution due to an execution

of kernel code is blamed for that, and eliminating ticks is the recommended solution, because

synchronizing such frequent events on a massively parallel machine might be impractical.

Brightwell et al. [4] compared performance between Linux and a lightweight Cougar kernel (a

predecessor of Catamount) on the ASCI Red machine. While we cannot draw broad conclusions

from their comparison of Linux with an interrupt-driven TCP adapter to Cougar’s far more effi-

cient transport layer, the authors do provide many useful insights. They observe that not-massively-

parallel code running under Linux can perform significantly better than on Cougar, probably be-

cause of improvements continuously made to the compilers and libraries by free software devel-

opers. Essentially, the overheads of maintaining a state-of-the-art software bundle are much higher

for a niche product than for the mainstream. In a more recent comparison of Linux and Catamount,

Hudson and Brightwell [8] conclude that even though the availability of CPU for applications run-

ning on an optimized Linux on Cray XT3 is slightly better than that of Catamount, its network

performance as measured by a microbenchmark is several times worse, on as few as 28 nodes.

While some slowdown with high-performance jobs is to be expected because of the more complex

memory hierarchy of Linux (see Section 2), such a large difference is difficult to explain. With just

a few dozen nodes, noise certainly should not be an issue.

As MPP platforms become more popular, they are put to new uses, requiring more capabilities

from the kernel. For example, some BG/L users have been requesting support for dynamically

loaded libraries so that tools such as Python can be used on the compute nodes. Basically, users

want MPPs to be more like the systems they are used to; it may be difficult to achieve that goal and

at the same time maintain the performance advantage of lightweight kernels.

18

7 Conclusions

This paper focused on the synchronicity of processes in parallel scientific applications and the

desynchronizing effects that can be introduced via the OS. We provided an overview of typical de-

tours that can be attributed to contemporary computer architectures and general-purpose operating

systems. We pointed out that so far as synchronicity is concerned, only some of those detours are

actually relevant.

In Section 3, we used a microbenchmark to measure noise on several platforms. Our results,

which are an extension of work published in [3], indicate that while specialized lightweight kernels

have a clearly superior noise ratio, the average detour length among all platforms tested is of the

same order of magnitude. Even a fairly standard Linux kernel can have a low maximum detour

length, provided that the hardware it manages is fairly simple and the set of processes limited.

With sophisticated low-latency patches or real-time enhancements [6], the differences in maximum

detour length compared to lightweight kernels would likely be even smaller. The differences in

noise ratio could be mostly eliminated with a move to a tickless kernel.

To get more insight into the effect of noise on synchronicity, in Section 4, we benchmarked

the performance of several collective operations under various levels of artificially injected noise.

While the slowdown in many cases is rather large, the experiments represent a worst-case scenario;

a real-world application would perform collective operations far less frequently and thus would be

affected far less. The slowdown is not cumulative in any significant way: we do not see an explosive

growth in execution time, relative to either the number of nodes or the detour length.

The most significant result of this paper is that detours need to be quite large in order to sig-

nificantly impact performance on extreme-scale architectures, as shown in Section 5. The detour

times for the BG/L I/O node Linux were all less than 6 µs—without any special latency-reducing

patches or other optimizations. The minimum noise we could artificially inject for BG/L was 16 µs,

with the resulting data hardly distinguishable from the case where there was no noise at all. It is not

until detours as long as 50 µs occur every 1 ms that any appreciable impact can be seen. This re-

sult strongly indicates that the noise from even tick-based operating systems with unsynchronized

schedulers, such as Linux, would have little impact on overall system performance. However, a

single rogue stealing an occasional timeslice could slow collectives by a factor of 1000. Clearly,

impact is an issue of scale; it is dominated by the relationship between the absolute performance

of collective operations to the longest unsynchronized detours in the system. For this reason, the

noise within an extreme-scale Linux cluster may pose little real performance impact. Without the

benefit of a lightning-fast global interrupt and tree-reduction networks, such as are available on

BG/L, the noise introduced by the Linux kernel can be relatively small compared to that of collec-

tives formed from point-to-point operations (even on BG/L we could see this effect for alltoall).

19

We believe that unless extra processes or interrupt processing dramatically desynchronizes a Linux

cluster, OS noise does not cause significant performance degradation.

An idea we are currently testing is to mask interrupts (and, thus, most sources of noise) and

enable them for only short periods. The intent is to coalesce frequent, fine-grained interrupts into

large groups, potentially decreasing the overhead. One could conclude from our experiments that

this would be a bad idea, as larger, less frequent detours are clearly more of an issue. However,

that is true only with unsynchronized noise. The experiments also show what an improvement a

simple initial synchronization of noise can bring, especially for more lightweight collectives; we

see an execution time magnification of only a few percent then. Larger, less frequent detours are

much easier to synchronize across the whole machine, so noise coalescence should be worthwhile.

Thus, noise should not pose serious problems even on extreme-scale machines, as long as we can

keep it synchronized. We point out, however, that BG/L has been designed with a single clock

source driving all the devices in the whole, multirack machine. Synchronizing a machine based on

commodity hardware, where each node has several independent time sources, might be more of a

challenge.

All in all, we believe the data gathered confirms that running a general-purpose OS such as

Linux on massively parallel machines should be viable and is definitely worth pursuing.

Acknowledgment: We gratefully acknowledge the IBM T. J. Watson Research Center for making

it possible for us to use the BGW system to perform the large-scale experiments described in this

paper.

References

[1] S. Agarwal, R. Garg, and N. K. Vishnoi. The impact of noise on the scaling of collectives: A theoretical

approach. In Proceedings of the 12th International Conference on High Performance Computing,

volume 3769 of Springer Lecture Notes in Computer Science, pages 280–289, Goa, India, Dec. 2005.

[2] G. Almási. Private communication, 2006.

[3] P. Beckman, K. Iskra, K. Yoshii, and S. Coghlan. Operating system issues for petascale systems. ACM

SIGOPS Operating Systems Review, 40(2):29–33, Apr. 2006.

[4] R. Brightwell, R. Riesen, K. Underwood, T. B. Hudson, P. Bridges, and A. B. Maccabe. A perfor-

mance comparison of Linux and a lightweight kernel. In Proceedings of the 5th IEEE International

Conference on Cluster Computing, Kowloon, Hong Kong, China, Dec. 2003.

[5] D. C. Burger, R. S. Hyder, B. P. Miller, and D. A. Wood. Paging tradeoffs in distributed-shared-

memory multiprocessors. Journal of Supercomputing, 10(1):87–104, Mar. 1996.

20

[6] S.-T. Dietrich and D. Walker. The evolution of real-time Linux, Nov. 2005. http://www.linuxdevices.

com/files/rtlws-2005/SvenThorstenDietrich.pdf.

[7] R. Garg and P. De. Impact of noise on scaling of collectives: An empirical evaluation. In Proceedings

of the 13th International Conference on High Performance Computing, volume 4297 of Springer

Lecture Notes in Computer Science, pages 460–471, Bangalore, India, Dec. 2006.

[8] T. Hudson and R. Brightwell. Network performance impact of a lightweight Linux for Cray XT3

compute nodes. In Proceedings of the ACM/IEEE Conference on Supercomputing, Tampa, FL, Nov.

2006.

[9] T. Jones, S. Dawson, R. Neely, W. Tuel, L. Brenner, J. Fier, R. Blackmore, P. Caffrey, B. Maskell,

P. Tomlinson, and M. Roberts. Improving the scalability of parallel jobs by adding parallel awareness

to the operating system. In Proceedings of the ACM/IEEE Conference on Supercomputing, Phoenix,

AZ, Nov. 2003.

[10] T. R. Jones, L. B. Brenner, and J. M. Fier. Impacts of operating systems on the scalability of parallel

applications. Technical Report UCRL-MI-202629, Lawrence Livermore National Laboratory, Mar.

2003.

[11] S. M. Kelly and R. Brightwell. Software architecture of the light weight kernel, Catamount. In

Proceedings of the 47th Cray User Group Conference, Albuquerque, NM, May 2005.

[12] W. Kramer and C. Ryan. Performance variability of highly parallel architectures. In Proceedings of

the International Conference on Computational Science, volume 2659 of Springer Lecture Notes in

Computer Science, Melbourne, Australia and St. Petersburg, Russia, June 2003.

[13] J. E. Moreira et al. Blue Gene/L programming and operating environment. IBM Journal of Research

and Development, 49(2/3):367–376, Mar. 2005.

[14] F. Petrini, D. J. Kerbyson, and S. Pakin. The case of the missing supercomputer performance: Achiev-

ing optimal performance on the 8,192 processors of ASCI Q. In Proceedings of the ACM/IEEE Con-

ference on Supercomputing, Phoenix, AZ, Nov. 2003.

[15] M. Sottile and R. Minnich. Analysis of microbenchmarks for performance tuning of clusters. In

Proceedings of the 6th IEEE International Conference on Cluster Computing, pages 371–377, San

Diego, CA, Sept. 2004.

[16] P. Terry, A. Shan, and P. Huttunen. Improving application performance on HPC systems with process

synchronization. Linux Journal, 127:68–73, Nov. 2004.

[17] TOP500 Supercomputer Sites. http://www.top500.org/.

[18] D. Tsafrir, Y. Etsion, D. G. Feitelson, and S. Kirkpatrick. System noise, OS clock ticks, and fine-

grained parallel applications. In Proceedings of the 19th International Conference on Supercomputing,

pages 303–312, Cambridge, MA, June 2005.

21

[19] R. van der Pas. Memory hierarchy in cache-based systems. Technical Report 817-0742-10, Sun

Microsystems, Nov. 2002.

[20] A. Wagner, D. Buntinas, D. K. Panda, and R. Brightwell. Application-bypass reduction for large-

scale clusters. In Proceedings of the 5th IEEE International Conference on Cluster Computing, pages

404–411, Kowloon, Hong Kong, China, Dec. 2003.

22

